If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7t^2=28=56=0
We move all terms to the left:
7t^2-(28)=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| -5.24=5+y/4 | | -9s=5-10s | | q-2/3=9 | | 2d-2+9d=10d-10 | | -4(3x-5)=80 | | -11/2=-7/3+19/6x | | 1/2(12x−10)=2/3(9+6x) | | -7n+3n=-5(1+7n)+5(1-7n) | | -7z+5=10-8z | | 8g+6=5g | | 3x4x6=41 | | 5(3x+6)=45 | | -7f-10=-4f-10 | | F(x)=-3x²+9x | | -4(8p+1)+6(2p-2)=p-5p | | u/5+11=25 | | 166-w=121 | | -4(8p+1)+6(2p-2=p-5p | | -33=-14+19x | | -x/10-2=7 | | 2x(4x-3)=10x+8 | | 30x-12=28 | | -2-7x=40 | | a-8/8=-1 | | 12+3b=2+b | | a-88=-1 | | 33n+5+2n=5+n+6n | | -4(2n-7)=-2(6n+4) | | r/14-4=-3 | | X^2*24=11x | | 2x-7+2x-7+x=11 | | -122=-5r-2(6r-7) |